Itv0060 2011 arhiiv
Code: ITV0060 |
Sisukord
- 1 Time, place, result
- 2 Järeleksam 2011 sügis
- 3 Eksam ja konsultatsioon
- 4 Practical work
- 5 Materials to study for the exam
- 5.1 Declarative and procedural representations
- 5.2 Databases: meaning and representation of facts
- 5.3 Rules in logic: apps in planning, robotics, ...
- 5.4 RDF, RDFS, OWL and conversion to 1st order logic
- 5.5 RDFa, reading and using RDF data from web pages
- 5.6 RDF relation to logic
- 5.7 Semantics of ordinary relational base
- 5.8 First order logic in query engines and planning
- 5.9 Data extraction
- 5.10 Restricted english jms
- 5.11 Uncertain knowledge logic
- 5.12 Indexes
- 6 Course structure
- 6.1 Intro and paradigms of knowledge representation
- 6.2 Databases: meaning and representation of facts
- 6.3 Rules in logic: apps in planning, robotics, ...
- 6.4 Various rule/logic languages
- 6.5 Scraping semistructured data
- 6.6 Time, context, metainformation
- 6.7 Probabilistic and nonmonotonic reasoning
- 6.8 Personalized search and recommendations
- 6.9 Fast search of facts and rules using indexing
- 6.10 Learning
Time, place, result
Semester: spring
Grading: exam
Points: 3.5
Lectures: every Monday 12.00-13.30, room IT-137a
Practical work: Mondays on odd weeks 10.00-11.30, room IT-213H:
31 jan, 14 feb, 28 feb, 14 mar, 28 mar, 4 apr, 18 apr, 2 may, 16 may.
Practical work will give 40% and exam 60% of points underlying the final grade.
Järeleksam 2011 sügis
Järeleksam toimub 26 august (reede): kell 10 auditoorium IT-137a
Eksam ja konsultatsioon
16. mai: eksamiks õppimise materjalide ülevaade ja fikseerimine.
Eksam:
järeleksam 15 juuni (kolmapäev): kell 9 auditoorium IT-137a
15 juuni tulemused:, eksamipunktid viidud 0-60 skaalale:
- HP eksam 52p + 40p ettekanded, hinne 5
- GJ eksam 31p + 32p ettekanded, hinne 2
3 juuni (reede): kell 9 auditoorium VI-121
3 juuni tulemused:, eksamipunktid viidud 0-60 skaalale:
- TT eksam 36p + 40p ettekanded, hinne 3
- RL eksam 40p + 40p ettekanded, hinne 4
- HP eksam 28p + 40p ettekanded, hinne 2
- VP eksam 22p + 40p ettekanded, hinne 2
- DA eksam 57p + 40p ettekanded, hinne 5
8 juuni (kolmapäev): kell 9 auditoorium VII-131
8 juuni tulemused:, eksamipunktid viidud 0-60 skaalale:
- KL eksam 60p + 40p ettekanded, hinne 5
- ML eksam 51p + 40p ettekanded, hinne 5
- ET eksam 48p + 30p ettekanded, hinne 3
- DF eksam 58p + 40p ettekanded, hinne 5
Järeleksam kevadel:
- 15 juuni (kolmapäev): kell 9 auditoorium IT-137a
Practical work
There are two labs on the same theme and an optional third lab.
First lab
The main goal of the first lab is to web-scrape data from the public sources using search engines and simple text analysis/statistics.
Details in Teadmised first lab 2011. The lab should be completed by March, later presentation will cut the points to half.
Second lab
The main goal of the second lab is to augment data obtained from the first lab by writing and using probabilistic rules with a rule engine.
Details in Teadmised second lab 2011.
Optional third lab
The optional third lab can be done in parallel with the second. It will be a relatively complex lab: successful passing will give additional 20 points, thus the weight of the exam is diminished from 60% to 40% of the overall score.
What to do: use Attempto to create a system such that you can write rules and/or facts and/or queries for the second lab in restricted english. These restricted english sentences have to be automatically converted to the form usable by Otter. It is a good idea to avoid probabilities in these rules, since it would be very hard to encode probabilities using attempto.
See: http://attempto.ifi.uzh.ch/site/ , http://attempto.ifi.uzh.ch/ape/
Materials to study for the exam
Eksamiküsimused:
Väikesed ülesanded: data ja reeglite esitamine ja kasutamine
Andmebaas nö tüüpilise relatsioonilise mudelina, key-value ja rdf kujul
Ülesanne blocks worldist: esita mingi olukord, mingi reegel ja näita rakendamise tulemust
RDF, RDFS ja OWL põhiasjad: väike ülesanne. Süntaksid ja eridetailid ei ole olulised.
RDF ja RDFS esitada loogikas faktide ja reeglitena, mõni lihtne OWLi näide võib ka olla
Arusaamine RDFa põhiasjadest, oskus teha näidet.
MÕni üldküsimus Nelli ja Attempto kohta.
Arusaam et mis on mittemonotoonne loogika ja mis ei ole, mis oleks viisid esitada vasturääkivaid teadmisi. Võib olla väike ülesanne mingite asjade esitamise kohta: näide ja selgitus.
Default loogika ülesanne a la linnud ja Quaker diamond: panna kirja reeglid ja viia läbi järeldused ja vbl selgitada lisaks. Seos CWA, Prolog ja default loogika vahel võib samuti küsimuse alla tulla.
Indeksid: arusaam baasindekseerimis-ideedest ja B+ treest. Ntx ehitada B+ mingi väikese datahulga jaoks. Sama hashi kohta ja bit indeksite kohta. Eriteemad a la indeksi pakkimine ja erinevad hashi viisid ei tule teemaks.
Täistekstiindeksid: osata ehitada näite pealt. Vt presentatsioonist erinevaid viise, ntx Patricia trie.
Termiindeksid: piisab discrimination tree indeksist ja näite põhjal indeksi ehitamisest.
Declarative and procedural representations
Lecture material:
Databases: meaning and representation of facts
- relation of plain data in databases to logic & representing complex structures in databases
- key/value pairs and rdf, compared to the relational model
Rules in logic: apps in planning, robotics, ...
Lecture material:
- Rules and logic: refresher and as ppt
See also:
- Geoff reasoning course notes: just for background, no questions in exam
- planning and blocks world
- blocks world axiom/query examples from lecture
RDF, RDFS, OWL and conversion to 1st order logic
Lecture material:
- RDFS: rdf schema and as ppt
Understand RDF and RDFS:
Understand basics of owl:
RDFa, reading and using RDF data from web pages
Understand main parts:
RDF relation to logic
Notes from lecture:
Understand a bit of:
Semantics of ordinary relational base
First order logic in query engines and planning
- Geoff reasoning course notes: just for background, no questions in exam
- planning and blocks world
- blocks world axiom/query examples from lecture
Data extraction
Web mining by Nell:
Restricted english jms
Uncertain knowledge logic
Indexes
Traditional database indexes incl B+ tree:
Bitmap indexes:
Hash indexes:
Fulltext indexes:
Term indexes: Understand basics of discrimination tree trie-type term indexes and path indexes from
Course structure
We start with representing and converting facts, continue to rules, first monotonic, then probabilistic and nonmonotonic, then look into search and indexing of complex information, and finally, some learning.
Intro and paradigms of knowledge representation
Lecture materials:
- Intro lecture: declarative and procedural representations
- roboswarm example of combining dec and proc
For KR, declarative and procedural rep see:
- Short wiki overview of knowledge representation
- Long and philosophical MIT overview of knowledge representation
- Pointers to classical papers
- A Survey of Cognitive and Agent Architectures
- Classical KRL paper from 1977: Bobrow & Winograd
Web mining by Nell:
Databases: meaning and representation of facts
Lecture material:
- relation of plain data in databases to logic & representing complex structures in databases
- key/value pairs and rdf, compared to the relational model
See also about databases and logic:
See also about RDF and related:
- rdf tutorial addendum for logic and dbases
- RDF wikipedia
- w3c RDF primer
- wiki intro
- Media:portaalidekoosvoime.ppt or as pdf Media:portaalidekoosvoime.pdf
- w3c rdfa primer
- rdfa and microformats deployment now
- microformats: a similar technology
- Hayes & Guha Lbase
Rules in logic: apps in planning, robotics, ...
Lecture material:
- Rules and logic: refresher and as ppt
Topics:
- propositional, first order, higher order
- semantics/models
- proofs and deriving new information
- automated reasoning
See also:
- Geoff reasoning course notes: just for background, no questions in exam
- planning and blocks world
- blocks world axiom/query examples from lecture
Various rule/logic languages
Lecture material:
Several languages:
- RDFS
- OWL
- KIF
- CL
- ontologies
- wordnet
- cyc
- restricted english systems
See also:
Scraping semistructured data
- Example for background: http://www.sightsmap.com/
Time, context, metainformation
Probabilistic and nonmonotonic reasoning
See also:
Personalized search and recommendations
Fast search of facts and rules using indexing
Learning
See also: