Notes about RDF and OWL: logical meaning
Allikas: Lambda
http://yy:111 rdf:type ex:book
http://yy:111 ex:bookauthor http://xx#121
http://xx#121 ex:eesnimi "Jaan"
isik -> person
person -> livingthing
rdf:type(http://xx#121,ex:isik)
========= Logical meaning ==========
<owl:ObjectProperty rdf:ID="connectsTo">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
<rdfs:domain rdf:resource="#NaturallyOccurringWaterSource"/>
<rdfs:range rdf:resource="#NaturallyOccurringWaterSource"/>
</owl:ObjectProperty>
rdf(type,connectsTo,#SymmetricProperty).
rdf(type,domain,#NaturallyOccurringWaterSource).
rdf(type,range,#NaturallyOccurringWaterSource).
---- rdfs implicit rules ----
ex:isik rdfs:SubclassOf ex:person
All x [holds(rdf:type,x,ex:isik) => holds(rdf:type,x,ex:person)]
All x [holds(rdf:type,x,ex:person) => holds(rdf:type,x,ex:livingthing)]
All x y [ holds(rdfs:SubclassOf,x,y) =>
All z (holds(rdf:type,z,x) => holds(rdf:type,z,y) ]
All x y [ rdfs:SubclassOf(x,y) =>
All z (rdf:type(z,x) => rdf:type(z,y) ]
ex:bookauthor rdfs:range ex:person
ex:bookauthor rdfs:domain ex:book
All x,y [ex:bookauthor(x,y) & => rdf:type(y,ex:person)]
All x,y [ex:bookauthor(x,y) & => rdf:type(x,ex:book)]
rdf(connectsTo,piritajogi,tallinnalaht) ... -> ...
rdf(type,piritajogi,#NaturallyOccurringWaterSource)
A x y u v (rdf(x,domain,y) & rdf(x,u,v) -> rdf(type,u,y))
------ Reification rule ----------
[timestamp: 10jaan2008, sisestaja:peeter, usaldusvaarsus:0.9]
13 rdf:object http://xx#121
13 rdf:predicate ex:eesnimi
13 rdf:subject "Jaan"
13 ex:timestamp 10jaan2008
13 sisestaja peeter
Reification meaning with a rule:
#12 rdf:subject http://yy:111
#12 rdf:predicate rdf:type
#12 rdf:object ex:book
All x,y,z,u
[holds(rdf:subject, x,y) &
holds(rdf:predicate,x,z) &
holds(rdf:object, x,u) =>
holds(z,y,u) ]
---- owl implicit rules ---
rdf(connectsTo,piritajogi,tallinnalaht) ... -> ...
rdf(connectsTo,tallinnalaht,piritajogi)
A x u v ( rdf(x,type,#SymmetricProperty) &
rdf(x,u,v) -> rdf(x,v,u)).
flueve = river & all.emptiesinto(sea)
flueve(x) <-> [river(x) & A y (emptiesinto(x,y) -> sea(y))]