Notes about RDF and OWL: logical meaning
Allikas: Lambda
http://yy:111 rdf:type ex:book http://yy:111 ex:bookauthor http://xx#121 http://xx#121 ex:eesnimi "Jaan" isik -> person person -> livingthing rdf:type(http://xx#121,ex:isik) ========= Logical meaning ========== <owl:ObjectProperty rdf:ID="connectsTo"> <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/> <rdfs:domain rdf:resource="#NaturallyOccurringWaterSource"/> <rdfs:range rdf:resource="#NaturallyOccurringWaterSource"/> </owl:ObjectProperty> rdf(type,connectsTo,#SymmetricProperty). rdf(type,domain,#NaturallyOccurringWaterSource). rdf(type,range,#NaturallyOccurringWaterSource). ---- rdfs implicit rules ---- ex:isik rdfs:SubclassOf ex:person All x [holds(rdf:type,x,ex:isik) => holds(rdf:type,x,ex:person)] All x [holds(rdf:type,x,ex:person) => holds(rdf:type,x,ex:livingthing)] All x y [ holds(rdfs:SubclassOf,x,y) => All z (holds(rdf:type,z,x) => holds(rdf:type,z,y) ] All x y [ rdfs:SubclassOf(x,y) => All z (rdf:type(z,x) => rdf:type(z,y) ] ex:bookauthor rdfs:range ex:person ex:bookauthor rdfs:domain ex:book All x,y [ex:bookauthor(x,y) & => rdf:type(y,ex:person)] All x,y [ex:bookauthor(x,y) & => rdf:type(x,ex:book)] rdf(connectsTo,piritajogi,tallinnalaht) ... -> ... rdf(type,piritajogi,#NaturallyOccurringWaterSource) A x y u v (rdf(x,domain,y) & rdf(x,u,v) -> rdf(type,u,y)) ------ Reification rule ---------- [timestamp: 10jaan2008, sisestaja:peeter, usaldusvaarsus:0.9] 13 rdf:object http://xx#121 13 rdf:predicate ex:eesnimi 13 rdf:subject "Jaan" 13 ex:timestamp 10jaan2008 13 sisestaja peeter Reification meaning with a rule: #12 rdf:subject http://yy:111 #12 rdf:predicate rdf:type #12 rdf:object ex:book All x,y,z,u [holds(rdf:subject, x,y) & holds(rdf:predicate,x,z) & holds(rdf:object, x,u) => holds(z,y,u) ] ---- owl implicit rules --- rdf(connectsTo,piritajogi,tallinnalaht) ... -> ... rdf(connectsTo,tallinnalaht,piritajogi) A x u v ( rdf(x,type,#SymmetricProperty) & rdf(x,u,v) -> rdf(x,v,u)). flueve = river & all.emptiesinto(sea) flueve(x) <-> [river(x) & A y (emptiesinto(x,y) -> sea(y))]