PLA001-0.ax
Allikas: Lambda
%-------------------------------------------------------------------------- % File : PLA001-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Planning (Blocks world) % Axioms : Blocks world axioms % Version : [SE94] axioms. % English : % Refs : [Sus73] Sussman (1973), A Computational Model of Skill Acquisi % : [SE94] Segre & Elkan (1994), A High-Performance Explanation-B % Source : [SE94] % Names : % Status : Satisfiable % Syntax : Number of clauses : 10 ( 0 non-Horn; 0 unit; 8 RR) % Number of atoms : 31 ( 0 equality) % Maximal clause size : 4 ( 3 average) % Number of predicates : 2 ( 0 propositional; 2-2 arity) % Number of functors : 9 ( 2 constant; 0-2 arity) % Number of variables : 33 ( 3 singleton) % Maximal term depth : 3 ( 2 average) % SPC : % Comments : The axioms are a reconstruction of the situation calculus % blocks world as in [Sus73]. %-------------------------------------------------------------------------- cnf(and_definition,axiom, ( holds(and(X,Y),State) | ~ holds(X,State) | ~ holds(Y,State) )). cnf(pickup_1,axiom, ( holds(holding(X),do(pickup(X),State)) | ~ holds(empty,State) | ~ holds(clear(X),State) | ~ differ(X,table) )). cnf(pickup_2,axiom, ( holds(clear(Y),do(pickup(X),State)) | ~ holds(on(X,Y),State) | ~ holds(clear(X),State) | ~ holds(empty,State) )). cnf(pickup_3,axiom, ( holds(on(X,Y),do(pickup(Z),State)) | ~ holds(on(X,Y),State) | ~ differ(X,Z) )). cnf(pickup_4,axiom, ( holds(clear(X),do(pickup(Z),State)) | ~ holds(clear(X),State) | ~ differ(X,Z) )). cnf(putdown_1,axiom, ( holds(empty,do(putdown(X,Y),State)) | ~ holds(holding(X),State) | ~ holds(clear(Y),State) )). cnf(putdown_2,axiom, ( holds(on(X,Y),do(putdown(X,Y),State)) | ~ holds(holding(X),State) | ~ holds(clear(Y),State) )). cnf(putdown_3,axiom, ( holds(clear(X),do(putdown(X,Y),State)) | ~ holds(holding(X),State) | ~ holds(clear(Y),State) )). cnf(putdown_4,axiom, ( holds(on(X,Y),do(putdown(Z,W),State)) | ~ holds(on(X,Y),State) )). cnf(putdown_5,axiom, ( holds(clear(Z),do(putdown(X,Y),State)) | ~ holds(clear(Z),State) | ~ differ(Z,Y) )). %--------------------------------------------------------------------------