Katse Glove vektoritega
Allikas: Lambda
#!/usr/bin/python3 # https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db import numpy as np from scipy import spatial import matplotlib.pyplot as plt from sklearn.manifold import TSNE def find_closest_embeddings(embedding): return sorted(embeddings_dict.keys(), key=lambda word: spatial.distance.euclidean(embeddings_dict[word], embedding)) embeddings_dict = {} with open("glove.6B.50d.txt", 'r', encoding="utf-8") as f: for line in f: values = line.split() word = values[0] vector = np.asarray(values[1:], "float32") embeddings_dict[word] = vector #print(find_closest_embeddings( # embeddings_dict["twig"] - embeddings_dict["branch"] + embeddings_dict["hand"] #)[:5]) print(find_closest_embeddings( embeddings_dict["king"] - embeddings_dict["man"] + embeddings_dict["woman"] )[:20]) #print(find_closest_embeddings( # embeddings_dict["king"] #)[:100]) """ John sat on a bike and started .... car and drove house water I car """